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1. Introduction 

 

  A holographic display based on a viewing window enables the converging of a 

reconstruction wave into a viewing window by means of an optical system. Accordingly, a 

user can observe a reconstructed hologram image, even with a small diffraction angle. It is 

very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a 

certain amount of wave aberrations will exist. A viewing-window-based holographic display, 

therefore, always includes distortions in an image reconstructed from a hologram pattern. 

Compensating the distortions of a reconstructed image is a very important technical issue 

because it can dramatically improve the performance when reconstructing a digital three-

dimensional content image from a hologram pattern. We therefore propose a method for 

suppressing image distortion by measuring and compensating the wave aberration calculated 

from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our 

experimental configuration using only numerical calculations, 

  A holographic digital display provides users with a realistic three-dimensional (3D) image 

or video by manipulating the hologram pattern, which represents the wave field of a 3D 

object. A spatial light modulator (SLM), a core device of a holographic digital display, loads a 

hologram pattern to reconstruct a 3D object in a free space. An SLM such as a liquid crystal 

display (LCD), digital micro-mirror device (DMD), or liquid crystal on silicon (LCoS) can be 

implemented as a display panel. Existing commercial panels do not satisfy SLM 

performance with a wide-viewing zone angle to observe a reconstructed image from the 

hologram displayed on the SLM with the naked eye. This is because the current state of 

technology does not enable the manufacturing of a display panel with a sub-micro-pixel 

pitch. Several alternative approaches exist to address the limited viewing zone angle of an 

existing SLM using scanning multiplexing [1], [2], tiling multiplexing [3]-[5], and a 

viewing window [6], [7]. 

Among these methods, a holographic display based on a viewing window allows even an 

LCD with a large pixel pitch to realize a sufficiently wide viewing angle. Such a display, 

however, has a disadvantage in that a reconstructed hologram is geometrically distorted by 
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wave aberrations that are introduced by the converging optical system for generating a 

viewing window [7]. The converging optical system in a viewing-window holographic display 

cannot avoid wave aberrations according to Siedel aberrations if it is designed and 

implemented using only spherical surfaces [8].  

  Studies have been conducted on exploiting a complex wave field phase [9]-[12] and 

applying an affine geometrical transformation to a hologram [13]-[17] to correct a 

distorted image numerically reconstructed from a hologram in the field of digital 

holography. We chose an approach to change the phase information from a hologram to 

compensate optical system wave aberrations in the viewing-window holographic display. 

The renowned approach to changing a phase is to use both a wavefront sensor (or an 

optical interferometer) that can quantitatively measure wave aberrations and a deformable 

mirror that controls a physical surface in a random form [18], [19]. 

  The wave aberrations can be mathematically represented using Zernike polynomials 

[20],[21], that is, a set of orthonormal functions. Zernike polynomials can be obtained through 

a wave aberration measurement, such as a Shack-Hartmann sensor [22] and interferometry 

[23]. A Shack-Hartmann sensor consists of a two-dimensional (2D) lenslet array and a charge-

coupled device (CCD) sensor. Interferometry includes a reference optical system to generate a 

reference wave for interfering with an object wave propagated from a test optical system. A 

viewing-window holographic display is generally composed of a converging optical system 

with a large aperture to illuminate a large-sized SLM. The effective area of a Shack–

Hartmann sensor is too small for measuring such a large aperture. Moreover, interferometry 

incurs a significant expense and effort for preparing a large-sized reference optical system. 

The measured wave aberrations of an optical system are compensated by a wave aberration 

compensator, such as a deformable mirror [24], [25] that can change its physical surface with 

an arbitrary shape. A wave aberration compensator also has a problem in handling a large 

aperture because its effective aperture is small, similar to a wave aberration measurement.  

  A method is therefore required for easily measuring and compensating wave aberrations 

with no limitation on the aperture size of a converging optical system in a viewing-window 
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holographic display. Ray tracing is very useful in measuring wave aberrations of an optical 

system with a large aperture because it can numerically calculate the Zernike coefficient from 

a given design specification of an optical system, even if a wave aberration measurement is 

not established. The obtained wave aberrations can be transformed into a compensation phase 

field, which is applied to a viewing-window holographic display [6],[7]. 
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2. Algorithm 

 

  

 2.1. Wave Aberration Representation Method  

 

A normalized Zernike polynomial Z n
m(ρ, θ) composed of a normalization term N n

m , a 

radial term  R n
|m|(ρ)  and a sinusoidal term φ(θ) is defined in (1) [10]. Here, ρ and θ 

indicate the radius and azimuthal angle, respectively, in polar coordinates, where θ is 

measured in a counterclockwise direction from the +x axis. The subscript n and superscript 

m of Z indicate the order and frequency of a Zernike polynomial, respectively, where n is 

greater than or equal to zero, and the absolute value of m is less than or equal to n. 

Moreover, n and m are either odd or even. 

 

Z n
m(ρ, θ) = {

       N n
m  × R n

|m|(ρ) × cos(mθ)  for  m ≥ 0    

−N n
m × R n

|m|(ρ) × sin(mθ)   for  m < 0
}         (1) 

 

The sinusoidal term in (1) is selected with a cosine function if the frequency m is greater 

than or equal to zero, and with a sine function for all other cases. 

The radial term R n
|m|(ρ) is calculated according to (2), and is dependent on m,  n,  and  

ρ. 

 

                 R  n
|m|(ρ) =  ∑

(−1)s(n − s)!

s! [
(n + |m|)

2 − s] ! [
n − |m|
2 − s] !

n−|m|
2

s=0

ρn−2s        (2)  

 

A Zernike polynomial consisting of both a radial term and a sinusoidal term is an 

orthogonal, not an orthonormal, function. It requires the additional term in (3) for 

normalization. 
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N n
m  =  √

2(n + 1)

(1 + δm,0)     
    (δm,0 = 1 if m = 0, δm,0 = 0 if m ≠ 0)   (3) 

 

The wave aberration function used to sum Zernike polynomial Z n
m(ρ, θ)  multiplied by 

coefficient  W  n
m  can represent any arbitrary wave aberration. 

 

                              W(ρ, θ) = ∑ ∑ W n
m

n

m=−n

∞

n=0

Z n
m(ρ, θ)                              (4) 

 

In (5), Zernike polynomial coefficient W  n
m is obtained from an integral equation of the 

wave aberration function W(ρ, θ) multiplied by Zernike polynomial Z n
m(ρ, θ). 

 

                           W  n
m =

1

π
∫ ∫ W(ρ, θ)

2π

0

1

0

 ∙ Z n
m(ρ, θ)dθρdρ            (5) 

 

The wave aberration field P(ρ, θ) is represented using the wave aberration function 

W(ρ, θ) in (6). 

P(ρ, θ) = e−j
2π

λ
W(ρ,θ)   or  

P(x, y) = e−j
2π

λ
W(x,y)                                   (6)   

 

 

The polar coordinate (ρ, θ) can be converted into the Cartesian coordinate (x, y) by 

replacing  (ρ, θ) with (√x2 + y2, tan−1(y/x)). 
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Code 1. Algorithm 2.1.1. Pseudo Code 

 Function Z=zernike_poly(n, m, x, y, d) 

Input 

 n :  highest order of the radial term ( n > 0 ) 

 m  :  azimuthal frequency of the sinusoidal term ( |m| <= n ) 

 x : 1-D array of pupil x-coordinate values (length(x)  =  length(y)) 

 y : 1-D array of pupil y-coordinate values (length(y)  = length(x)) 

 d : Aperture diameter 

Output  Z : the Zernike polynomial term of (n, m) 

1 

2 

3 

4 

5 

6 

function Z=zernike_poly(n,m,x,y,d) 

  

% initialize circular aperture function 

x_max=length(x); 

y_max=length(y); 

radius=d/2; 

  

for i=1:x_max    

    for j =1:y_max 

       A(i,j)=(sqrt(x(i)^2+y(j)^2) <= radius); 

    end 

end 

  

% Calculate Normalization term 

N=sqrt(2*(n+1)/(1+(m==0))); 

  

% Calculate Zernike polynomial 

if n==0 

   Z=A; 

else 

   Z=zeros(x_max,y_max); 

   for i=1:x_max 

      for j=1:y_max 

         r=sqrt(x(i)^2+y(j)^2); 

         if (x(i)>=0 & y(j)>=0) | (x(i)>=0 & y(j)<0) 

            theta=atan(y(j)/(x(i)+1e-30)); 

         else 

            theta=pi+atan(y(j)/(x(i)+1e-30)); 

         end 

         for s=0:(n-abs(m))/2 

            Z(i,j)=Z(i,j)+(-1)^s*factorial(n-s)*(r/radius)^(n-2*s)/... 

                (factorial(s)*factorial((n+abs(m))/2-s)*factorial((n-abs(m))/2-s)); 

         end 

         Z(i,j)=A(i,j)*N*Z(i,j)*((m>=0)*cos(m*theta)-(m<0)*sin(m*theta)); 

      end 

   end 

end 
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2.1. Diffraction Model in Viewing-Window Holographic Display with Wave Aberration 

 

The spherical wave field emitted from a point source functions as the reconstructed beam 

and illuminates the SLM plane through the converging optical system, which acts as a convex 

lens. The SLM modulates the spherical wave field according to a hologram pattern in order to 

reconstruct a 3D object in a free space. There are two kinds of modulated wave fields 

departing from the SLM plane. The first is a non-diffracted wave field in an on-axis hologram 

to be focused on one point on the pupil plane, which is located at a distance ds away from 

the SLM plane. The other is a diffracted wave field of a zero order that is used to form a 

viewing window. A user can observe the reconstructed 3D object by placing an eye over the 

viewing window.  

 

 

Fig. 1. Diffraction model based on a viewing window. 

 

A wave field D(xs,  ys) on an SLM plane ( xs,  ys ) as an input hologram propagates into 

a wave field R(x2,  y2) on a retina plane ( x2,  y2 ) through a wave field U(x1,  y1) on an 
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object plane ( x1,  y1 ). Here, D(xs,  ys) is a hologram pattern, a wave field inputted in the 

SLM plane of a holographic display;  λ is defined as the wavelength of an illumination; d1 

is the distance between an object plane ( x1,  y1 ) and a pupil plane ( xp,  yp );  d2 is the 

distance between a pupil plane ( xp,  yp ) and a retina plane ( x2,  y2 );  ds is the distance 

between an SLM plane ( xs,  ys ) and a retina plane ( x2,  y2 ); and  f is the focal length of 

an eye lens. 

The focal length f of an eye lens or a camera is calculated by (7), which is derived from 

the formula of the lens-maker if a user or camera focuses on an object plane ( x1,  y1 ) placed 

between the SLM plane ( xs,  ys ) and retina plane ( x2,  y2 ).  

 

  
1

d1
+

1

d2
=

1

f
,      f =

d1d2

d1+d2
                                   (7) 

 

A pupil aperture function PL(xpc, ypc, r) is defined with a circ function of (8), where 

(xpc, ypc) and r are the center coordinate and radius of the eye lens in the pupil plane, 

respectively. Here, PL(xpc, ypc, r) is used to describe a situation in which an eye is  shifted 

in the pupil plane.  

 

PL(xpc, ypc, r) = circ {
(xp − xpc)

2
+ (yp − ypc)

2

r2
}  

=  

{
 
 
 

 
 
 1      

(xp − xpc)
2
+ (yp − ypc)

2

r2
< 1 

 
1

2
      

(xp − xpc)
2
+ (yp − ypc)

2

r2
= 1    

0      
(xp − xpc)

2
+ (yp − ypc)

2

r2
> 1  

                                           (8)   

 

 

The converging optical system generates the converging spherical wave field S(xs, ys) 
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with focal length  ds , as defined in (9). 

 

                              S(xs, ys) =   exp {−j
2π

λ

 (xs
2 + ys

2)

2ds 
}                    (9) 

 

The wave field Rvw(x2,  y2) is obtained by multiplying D(xs, ys) by S(xs, ys). The term 

S(xs, ys)exp {j
2π

λ

 (xs
2+ys

2)

2ds 
}  in the second integral of (10) becomes one. Equation (10) 

represents the diffraction relationship between a wave field Rvw(x2,  y2) and a hologram 

pattern D(xs,  ys) in a viewing-window holographic display. 

 

Rvw (x2,  y2) = exp {j
2π

λ

 (x2
2 + y2

2)

2d2 
}  

× ∬PL(xpc, ypc, r)exp {j
2π

λ
(
1

 ds
+
1

 d2
−
1

f
) (
xp

2 + yp
2

2
)}

∞

−∞

× [∬D(xs,  ys)S(xs, ys)exp {j
2π

λ

 (xs
2 + ys

2)

2ds 
}

∞

−∞

× exp {−j2π (
xp

λds
xs +

yp

λds
ys)} dxsdys ]   

× exp {−j2π (
x2
λd2

xp +
y2
λd2

yp)} dxpdyp                                                     (10) 

 

For back-propagation from the wave field  Rvw(x2,  y2)   through the pupil plane, 

D(xs,  ys) is derived as (11).   

 

D(xs,  ys) =   S(xs, ys)
−1exp {−j

2π

λ

 (xs
2 + ys

2)

2ds 
} 
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× ∬exp {−j
2π

λ
(
1

 ds
 +

1

 d2
−
1

f
)
(xp

2 + yp
2)

2
}

∞

−∞

× [∬Rvw (x2,  y2)exp {−j
2π

λ

 (x2
2 + y2

2)

2d2 
}                      

∞

−∞

×  exp {j2π (
xp

λd2
x2 +

yp

λd2
y2)} dx2dy2]  

×  exp {j2π (
xs
λds

xp +
ys
λds

yp)} dxpdyp                                    (11)     

 

Here, the term S(xs, ys)
−1exp {−j

2π

λ

 (xs
2+ys

2)

2ds 
} of (11) is equal to one. The wave field 

Rvw(x2,  y2)  can be replaced with the wave field   U (−
d1

d2
x2, −

d1

d2
y2)   scaled down 

U(x1,  y1) by d2/d1 in the xand y axis direction according to (13), which is derived from 

the diffraction relationship between Rvw(x2,  y2) and  U(x1,  y1)  of (10) if equation (7) is 

satisfied.  

 

Rvw (x2,  y2; f =
d1d2

d1 + d2
) = exp {j

2π

λ

 (x2
2 + y2

2)

2d2 
} U (−

d1
d2
x2, −

d1
d2
y2) (12) 

 

We can obtain  Rvw(x2,  y2; f) according to (12) if an object wave field U(x1,  y1) is 

given and is focused by an eye or camera lens. In addition, D(xs,  ys) is furthermore 

generated by substituting the obtained Rvw(x2,  y2; f) in (11), and is the hologram pattern to 

be loaded on the SLM plane to optically reconstruct the object wave field U(x1,  y1).  

The off-axis wave field is useful for enabling a reconstructed 3D object to be easily 

observed because it can spatially separate the twin hologram images to be reconstructed when 

SLM modulates only the amplitude of a complex wave field. The off-axis wave field 

Dshift(xs, ys) on the SLM plane can be generated according to (13) by multiplying D(xs, ys) 
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by a shifting phase factor SPF(xs,  ys)= exp {j
2π

λ
(sin θxs xs + sin θys ys)} . The shifting 

phase factor SPF(xs,  ys) is equal to that introduced by a prism with deflection angle 

(θxs , θys) calculated from (tan−1
xpc

ds
, tan−1

ypc

ds
)  [27].  

. 

               Dshift(xs, ys) = D(xs, ys) × SPF(xs,  ys)                           (13) 

 

SPF(xs,  ys) is defined in (14) when a shifting coordinate is equal to (xpc, ypc),  which is 

the center coordinate of an eye lens in the pupil plane.  (sin (tan−1
xpc

ds
) , sin (tan−1

ypc

ds
) )  

is approximately equal to  (
xpc

ds
,
ypc

ds
)  assuming that ds is greater than xpc and ypc.   

 

               SPF(xs,  ys) = exp {j
2π

λ
(
xpc

ds
xs +

ypc

ds
ys)}                 (14) 

 

The converging optical system always includes some wave aberrations because it cannot be 

optically designed with no such aberrations. It produces a converging spherical wave field 

with wave aberrations for an illumination of a viewing-window holographic display. The 

illumination wave field C(xs, ys; xvc, yvc)  can be mathematically expressed as a 

multiplication of both S(xs, ys) and P(xs, ys; xvc, yvc) in (15). 

 

                      C(xs, ys; xvc, yvc) =  S(xs, ys) × P(xs, ys;  xvc, yvc)          (15)  

 

 Here,  P(xs, ys; xvc, yvc) is a wave aberration field on the SLM plane (xs, ys), calculated 

according to (6), when a viewing window is centered at a coordinate (xvc, yvc) in the pupil 

plane. The wave field leaving from the SLM plane is calculated by multiplying 

Dshift(xs, ys)by C(xs, ys; xvc, yvc). Thus, the retina wave field R′vw(x2,  y2; xvc, yvc) in a 

viewing-window holographic display with wave aberrations is derived by replacing 
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D(xs,  ys)  and  exp {j
2π

λ
(
1

 ds
+

1

 d2
−
1

f
) (

xp
2+yp

2

2
)} with Dshift(xs, ys) × C(xs, ys; xvc, yvc) 

and exp {j
2π

λ
(
1

 ds
+

1

 d2
−
1

f
) (

(xp−xpc)
2
+(yp−ypc)

2

2
)} . 

 

R′vw (x2,  y2; xvc, yvc) = exp {j
2π

λ

 (x2
2 + y2

2)

2d2 
}  

× ∬PL(xpc, ypc, r)exp {j
2π

λ
(
1

 ds
+
1

 d2
−
1

f
) (
(xp − xpc)

2
+ (yp − ypc)

2

2
)}

∞

−∞

× [∬Dshift(xs, ys)P(xs, ys; xvc, yvc)exp {−j2π (
xp

λds
xs +

yp

λds
ys)} dxsdys 

∞

−∞

]   

× exp {−j2π (
x2
λd2

xp +
y2
λd2

yp)} dxpdyp                                                        (16) 

 

Equation (16) is used to calculate a wave field on the retina plane if a hologram pattern 

D(xs,  ys)  on the SLM plane and a wave aberration field P(xs, ys; xvc, yvc)  on the 

converging optical system is given. This means that (16) enables us to numerically reconstruct 

a hologram pattern on the SLM plane in a viewing-window holographic display with wave 

aberrations without conducting any optical experiments. 

The hologram pattern D̅(xs, ys ; xvc, yvc)  of the compensating wave aberrations is 

generated by multiplying D(xs,  ys) by the inverse of a wave aberration field in (6) to 

suppress a wave aberration field P(xs, ys ; xvc, yvc) on the converging optical system when 

the center of the viewing window is placed at (xvc, yvc) in the pupil plane. 

 

     D̅(xs, ys; xvc, yvc)  =  Dshift(xs, ys) × P(xs, ys; xvc, yvc)
−1            

=  D(xs,  ys) × SPF(xs,  ys) × P(xs, ys; xvc, yvc)
−1       (17) 

 

Here, D̅(xs, ys ; xvc, yvc)  is derived in (18) with regard to U (−
d1

d2
x2, −

d1

d2
y2)  by 
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substituting D(xs,  ys) of (11) and Rvw(x2,  y2) of (12) in (16) if an object wave field 

U(x1,  y1) is given. 

 

D̅(xs, ys; xvc, yvc) = SPF(xs,  ys) × P(xs, ys; xvc, yvc)
−1     

× ∬exp {−j
2π

λ
(
1

 ds
 +

1

 d2
−
1

f
)
(xp

2 + yp
2)

2
}

∞

−∞

× [∬U(−
d1
d2
x2, −

d1
d2
y2) exp {j2π (

xp

λd2
x2 +

yp

λd2
y2)} dx2dy2

∞

−∞

]  

×  exp {j2π (
xs
λds

xp +
ys
λds

yp)} dxpdyp                                                     (18) 

 

Equations (16) and (18) can be represented through a Fourier transform to employ a fast 

Fourier transform (FFT). 

 

R′vw (x2,  y2; xvc, yvc)

= exp {j
2π

λ

 (x2
2 + y2

2)

2d2 
} FT(xp, yp)  [PL(xpc, ypc, r)exp

{j
2π

λ
(
1

 ds
+
1

 d2

−
1

f
) (
(xp − xpc)

2
+ (yp − ypc)

2

2
)}

× FT(xs, ys){D(xs,  ys)SPF(xs,  ys)P(xs, ys; xvc, yvc)}]                                              (19)  

                                                     

D̅(xs, ys; xvc, yvc) =  SPF(xs,  ys)P(xs, ys; xvc, yvc)
−1 

× FT
(xp, yp)
−1  [exp {−j

2π

λ
(
1

 ds
 +

1

 d2
−
1

f
)
(xp

2 + yp
2)

2
}

× FT
(x2, y2)
−1 {U (−

d1
d2
x2, −

d1
d2
y2)} ]                                                             (20) 
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Here, (D̅(xs, ys ; xvc, yvc) is the hologram pattern to be generated with respect to the single 

depth between the SLM plane and the object plane.   

The 3D object consists of sliced object planes with different depths. The compensated 

volume hologram pattern D̿ (xs, ys; xvc, yvc) is obtained as the sum of the hologram patterns 

generated with regard to the sliced object planes, as shown in Fig. 2. The value of  

D̿ (xs, ys; xvc, yvc) is calculated according to (21) if a 3D object is divided with N-sliced 

object planes. 

 

                            D̿ (xs, ys; xvc, yvc) =∑D̅(xs, ys; xvc, yvc, zi)

N

i=1

               (21) 

 

Fig. 2. Hologram pattern generation in a 3D object. 
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Fig 1. Algorithm 2.1.2. Flow Chart 

 

 

3. Implementation S/W 

 3.1. Wave Aberration Representation Method 

  

3.2. Diffraction Model in Viewing-Window 

(TBD)  

 

 

4. Glossary 

 (TBD) 

 

 

Type Source File S/W Description 

Matlab zernike_poly.m  

This function computes the values of a 

Zernike Polynomial over a circular pupil 

of diameter d 
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